The synergistic tumor growth-inhibitory effect of probiotic *Lactobacillus* on transgenic mouse model of pancreatic cancer treated with gemcitabine

Shan-Ming Chen\(^{1,2}\), Wee-Wei Chieng\(^3\), Szu-Wei Huang\(^4\), Li-Jin Hsu\(^5\) & Ming-Shiou Jan\(^{3,6,7,8,0}\)

Pancreatic cancer is one of the most lethal and chemo-resistant cancers worldwide. Growing evidence supports the theory that the gut microbiota plays an essential role in modulating the host response to anti-cancer therapy. The present study aimed to explore the effect of probiotics as an adjuvant during chemotherapy for pancreatic cancer. An *LSL-Kras\(^{G12D}\)−Pdx-1-Cre* mouse model of pancreatic ductal adenocarcinoma (PDAC) was created to study the effects of using four-week multi-strain probiotics (*Lactobacillus paracasei* GMNL-133 and *Lactobacillus reuteri* GMNL-89) as an adjuvant therapy for controlling cancer progression. At 12 weeks of age, pancreatitis was induced in the mice by two intra-peritoneal injection with caerulein (25 µg/kg 2 days apart). Over the next 4 weeks the mice were treated with intra-peritoneal injections of gemcitabine in combination with the oral administration of probiotics. The pancreas was then harvested for analysis. Following caerulein treatment, the pancreases of the *LSL-Kras\(^{G12D}\)−Pdx-1-Cre* transgenic mice exhibited more extensive pancreatic intra-epithelial neoplasia (PanIN) formation. Combined treatment with gemcitabine and probiotics revealed a lower grade of PanIN formation and a decrease in the expression of vimentin and Ki-67. Mice that received gemcitabine in combination with probiotics had lower aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels. Notably, the use of high-dose probiotics alone without gemcitabine also had an inhibitory effect on PanIN changes and serum liver enzyme elevation. These findings suggest that probiotics are able to make standard chemotherapy more effective and could help improve the patient’s tolerance of chemotherapy.

Abbreviations

ALT: Alanine aminotransferase
AST: Aspartate aminotransferase
EMT: Epithelial to mesenchymal transition
GEMMs: Genetically engineered mouse models
HCAs: Heterocyclic amines
H&E: Hematoxylin and eosin

\(^1\)Department of Pediatrics, Chung Shan Medical University Hospital, Taichung, Taiwan.
\(^2\)Department of Pediatrics, School of Medicine, Chung Shan Medical University, Taichung, Taiwan.
\(^3\)Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung, Taiwan.
\(^4\)Department of Post-Baccalaureate Veterinary Medicine, Asia University, Taichung, Taiwan.
\(^5\)Department of Medical Laboratory Science and Technology, Medical College, National Cheng Kung University, Tainan, Taiwan.
\(^6\)Institute of Medicine, Medical College, Chung Shan Medical University, 110, Sec 1, Jiaoguo N Rd, Taichung 40246, Taiwan.
\(^7\)Immunology Research Center, Chung Shan Medical University, Taichung, Taiwan.
\(^8\)Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, Chung Shan Medical University, Taichung, Taiwan.
\(^0\)email: msjan@csmu.edu.tw